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Chapter 02. Working with Sequence



Agenda

• Create a Biological Sequence

• Basic Operations for Sequences

• Functions Applying for Sequences

• Biological Operations for Sequences

• Modifiable Sequences

• Biological Functions for Strings
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CREATE A BIOLOGICAL SEQUENCE

3



FASTA

GenBank

Introduction to Bio.Seq.Seq

4

(Bio.Seq.Seq is a Read-only Object)



Different Types of Sequences

5

Notice:
• Although you can add any character to Seq, 

invalid characters can cause errors in the program 
when performing certain actions with biological meaning.
(e.g., Transcription, Translation…etc.)

Legal Chars: 'ATCG'

Legal Chars: 'UAGC'

Legal Chars:
'ACDEFGHIKLMNPQRSTVWY'

ATCG
UAGC
MELKILV
ATNNNCG
ATC--GCA

Output:



Practice

• Construct Different Types of Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

6

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


BASIC OPERATIONS FOR 
SEQUENCES
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Add Two Sequences

8

AATCCGAT
AATCCGATCG
AATCCGATAGCG
MELKILVAATCCGAT
AATCCGATUAGC



Practice

• Add Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

9

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Multiply Sequences with Integer

10

AATCAATCAATC
MELKILVMELKILV

Multiply = Repeat



Practice

• Multiply Sequences by Integers
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:
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(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Compare Sequences

12

True
True
True
False
True



Practice

• Comparing Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:
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(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Slice a Sequence

• “Slicing” = The Way to Get a “Sub-Sequence”

14

“ATCCGATGCACCAG”
0 1 2 3 4 5 6 7 8 9 10 11 12 13

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Notice:
• Python is “0-based” (0~13)
• NCBI sequences are “1-based” (1~14)



Slice a Sequence

15

T
C
GATGGGCC
GCTGTAGTAAG
AGGCATGCATC
TAGCTAAGAC
CGCTAAAAGCTAGGATATATCCGGGTAGCTAG



Practice

• Slicing a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:
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(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Iterate a Sequence

• Iteration = Take 1 letter a time from the Sequence

17

G
A
T
C
...

0 G
1 A
2 T
3 C
...



Practice

• Iterating a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

18

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


FUNCTIONS APPLYING FOR 
SEQUENCES

19



Length of a Sequence

20

32 Characters

32



Practice

• Get the Length of a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

21

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Change the Case

22

gatcgatgggcctatataggatcgaaaatcgc

GATCGATGGGCCTATATAGGATCGAAAATCGC
gatcgatgggcctatataggatcgaaaatcgc



Practice

• Chage the Case of Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

23

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Check for Containing

24

1 Create a Sequence

2 Sequence <compare> Sequence

3 String <compare> Sequence



Practice

• Check for Containing
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

25

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Count the Occurrence

• Non-overlapped Counting

26

.count("A")

AAAATCCGCGATAGC → 6

.count("AA")

AAAATCCGCGATAGC → 2

.count("AA“, 2, -1)

AAAATCCGCGATAGC → 1

2 -1



Count the Occurrence

• Overlapped Counting

27

.count_overlap("AA")

AAAATCCGCGATAGC → 3

.count_overlap("A")

AAAATCCGCGATAGC → 6

.count_overlap("AA“, 2, -1)

AAAATCCGCGATAGC → 1

2 -1



Count the Occurrence

• Count for GC%

28

Manual calculation

Using the library



Practice

• Count the Occurrence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

29

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Find Sequence Patterns

• Find Forwardly: .find()

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

→ 6

→ 2 (6~7, 8~9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

start =
head

↓

end =
-1
↓

found_index
↓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

found_index
↓

+ len(“CG”)

start =
head
↓

end =
-1
↓



Practice

• Find Sequence Patterns Forwardly
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

31

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Find Sequence Patterns

• Find Backwardly: .rfind()

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

→ 8

→ 2 (6~7, 8~9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

start
↓

end =
tail
↓

found_index
↓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

start
↓

end = tail =
found_index
↓

↑
next found



Practice

• Find Sequence Patterns Backwardly
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

33

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Find Sequence Patterns

• Check for Start Codons & Stop Codons

34

Check Start Codon

Check Start Codon 
at Specific Location

Check all Start Codons

Check all Stop Codons



Practice

• Check for Start Codons & Stop Codons
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:
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(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Split & Join Sequences

• Biological Meanings of Split & Join

36



Split & Join Sequences

• Split a Sequence

37

AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG

[Seq('AU'), Seq('AUUGUAAUG'), Seq('GCUGAAAGGGUGCCCGAUAGUUG')]



Split & Join Sequences

• Join Sequences

38

Exons = [Seq('AU'), Seq('AUUGUAAUG'), Seq('GCUGAAAGGGUGCCCGAUAGUUG')]

AUAUUGUAAUGGCUGAAAGGGUGCCCGAUAGUUG

mRNA1 =

AUNNNAUUGUAAUGNNNGCUGAAAGGGUGCCCGAUAGUUG

mRNA2 =



Practice

• Split & Join Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

39

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Strip Spaces or Other Symbols

• What is “Strip”?

40

• Why “Strip”?

– Remove unwanted characters from both sides of the 
sequence.

Please enter sequence: ▒ ▒ ▒ATGCGATTACG ▒

ATGCGATTACG

spaces spaces



Strip Spaces or Other Symbols

41

Please enter sequence: ▒ ▒ ATGGCGAG ▒
Before Strip: ▒ ▒ ATGGCGAG ▒
After Strip: ATGGCGAG

Before Strip: ---ATGCGACCGA-
After Strip: ATGCGACCGA



Practice

• Strip Spaces or Other Symbols
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

42

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


BIOLOGICAL OPERATIONS FOR 
SEQUENCES

43



Ungap a Sequence

• What is “Ungap”?

44

- Return a copy of the sequence without the gap character(s).

-ATA--TGAAAT-TTGAAAA ATATGAAATTTGAAAA

CGGGTAG=AAAAAA CGGGTAGAAAAAA



Ungap a Sequence

45

Before Ungapped: -ATA--TGAAAT-TTGAAAA
After Ungapped: ATATGAAATTTGAAAA

Before Ungapped: CGGGTAG=AAAAAA
After Ungapped: CGGGTAGAAAAAA



Practice

• Ungap a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

46

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Transcription

• What is Transcription?

47

Forward
Transcription

Backward
Transcription



Transcription

• Forward Transcription

48

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
3' TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5' : Template Strand
5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA

Transcribe Protein Sequence: MAIVMGR

Transcribe on Protein Sequence
will be ignored



Transcription

• Backward Transcription

49

5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA
5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Backward Transcription

Backward Transcription of Protein Sequence: MAIVMGR
Backward Transcribe on 

Protein Sequence will be ignored



Practice

• Transcription
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

50
(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Translation

51

Translation Table
(from NCBI)

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi


Translation

• Syntax of .translate() Function

52

.translate(table='Standard', stop_symbol='*', to_stop=False, cds=False)

• table: Specify which codon table to use (string or integer)

• stop_symbol: Specify which character to represent the stop codon.

• to_stop: Translation is stopped at the first stop codon or not.

• cds: Sequence is started with start codon, ended with stop codon, 

and is a multiple of 3 or not.



Translation

• Translate with DNA + Standard Table

53

5' ATGGCCATTGTGATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
5' AUGGCCAUUGUGAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA

Create a Sequence

Translate (DNA, Standard): MAIVMGR*KGAR*

Translate with DNA + Standard Table



Translation

• Other Operations of Translation

54

Translate (DNA, Stop='@'): MAIVMGR@KGAR@

Change the Symbol

Translate (DNA, Until Stop): MAIVMGR

Translate until Stop Codon

Translate (RNA, Standard): MAIVMGR*KGAR*

Change the Symbol



Translation

• Translate with Other Table

55

Translate (DNA, Table=2): MAIVMGRWKGAR*

5' GTGATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Sub-Coding Sequence

Translate (DNA, Table=2, CDS): MMGRWKGAR



Practice

• Translation
– Write and Run the left codes on a Colab

page called “SeqObjects.ipynb”:

56
(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


MODIFIABLE SEQUENCES

57



Problem of Modifying Sequence

58

TypeError: 'Seq' object does not support item assignment

→ Bio.Seq.Seq is an “Immutable” object
(Immutable = Not allow to change it partially)



Practice

• Test for the Problem of Bio.Seq.Seq Modification
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

59
(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Solution: Bio.Seq.MutableSeq

• About Bio.Seq.MutableSeq
– A Sequence object that can be modified partially.

• Possible Operations

60

Comparison: ==, !=, <, <=, >, >= Insert: seq.insert(8,'G')

Length: len() Remove: seq.remove('A')

Partially Change: seq[5] ='T' Count: seq.count("ATG")

Partially Delete: del seq[5] Reverse: seq.reverse()

Concatenation (Add): seq = seq + "GCG" Complement:
seq.complement()
seq.reverse_complement()

Duplication (Multiple): seq = seq * 3



Conversion of MutableSeq

61

String → MutableSeq

str_seq = "GCCATTGTA"

mutable_seq = MutableSeq(str_seq)

MutableSeq → String

mutable_seq = MutableSeq("GCCATTGTA")

str_seq = str(mutable_seq)

Seq → MutableSeq

seq = Seq("GCCATTGTA")

mutable_seq = MutableSeq(seq)

mutable_seq = seq.tomutable()

MutableSeq → Seq

mutable_seq = MutableSeq("GCCATTGTA")

seq = Seq(mutable_seq)

seq = mutable_seq.toseq()



Practice

• Example for Bio.Seq.MutableSeq
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

62
(Solution URL of this Practice)

5' GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA 3' : Original DNA
5' GCCATGGTAATGGGCCGCTGAAAGGGTGCCCGA 3' : DNA after Mutation
3' AGCCCGTGGGAAAGTCGCCGGGTAATGGTACCG 5' : DNA after Mutation & Reverse

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


BIOLOGICAL FUNCTIONS FOR 
STRINGS

63



Biological Functions for Strings

• What do these functions do?

– When you want to perform some Biological Operations (e.g., transcribe, 
translate...etc.) directly on a "string" instead of using Seq or MutableSeq
objects.

• What functions are available?

– complement()

– reverse_complement()

– transcribe()

– back_transcribe()

– translate()

64



Example

65

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
3' TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5' : Template Strand

5' CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT 3' : Template Strand

5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Backward Transcription

Protein Sequence: MAIVMGRWKGAR@



Practice

• Biological Functions for Strings
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

66
(Solution URL of this Practice)

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
3' TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5' : Template Strand
5' CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT 3' : Template Strand
5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA
5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Backward Transcription
Protein Sequence: MAIVMGRWKGAR@

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Homework

• Parse the FASTA file of E. Coli

– Please go to the URL: https://bit.ly/3wHQ6Iu

– Read the requirements listed on the above URL.

– Create your own Colab page and start to implement the requirements.

– When you finished, click “Share” button at the upper-right.

– Click “Get Link” > “Copy Link” from the pop-up window.

– Send your page’s link to Google Classroom as the result of this 
homework.

67

https://bit.ly/3wHQ6Iu


Summary

• Create a Sequence

– dna_seq = Seq("ATCG")

• Basic Operations

– Add: Seq("AATC") + Seq("CGAT")

– Multiple: Seq("AATC") * 3

– Compare: Seq("ATCG") != Seq("GGCC")

– Slicing: Seq("GATCGA")[0:4:2]

– Iterate:

• for letter in my_seq:

• for index, letter in enumerate(my_seq):

• Functions Applying for Sequences

– Length: len(my_seq)

– Case: my_seq.lower(), my_seq.upper()

– Contain: Seq("AAA") in my_dna

– Count:

• Non-overlapped: my_seq.count("AA")

• Overlapped: my_seq.count_overlap("AA")

• GC%: Bio.SeqUtils.GC(my_seq)

– Find: find(), rfind(), startswith(), endswith()

– Split & Join:

• Pre_mRNA.split("GGCC")

• "".join([Seq('AU'), Seq('AUUGUT')])

– Strip: my_seq.strip("-")

68



Summary

• Biological Operations
– Ungap: my_seq.ungap("-")
– Transcription:

• coding_dna.transcribe()
• protein.back_transcribe()

– Translation: coding_dna.translate(table=2, stop_symbol="@")

• Bio.Seq.MutableSeq
– Create: mutable_seq = MutableSeq(my_seq)
– Mutation: mutable_seq[5] = "G"
– Reverse: mutable_seq.reverse()

• Biological Functions for Strings
– complement()
– reverse_complement()
– transcribe()
– back_transcribe()
– translate()

69
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