
Robert C. Chi

Python Programming for Bioinformatics

Chapter 02. Working with Sequence



Agenda

• Create a Biological Sequence

• Basic Operations for Sequences

• Functions Applying for Sequences

• Biological Operations for Sequences

• Modifiable Sequences

• Biological Functions for Strings

2



CREATE A BIOLOGICAL SEQUENCE

3



FASTA

GenBank

Introduction to Bio.Seq.Seq

4

(Bio.Seq.Seq is a Read-only Object)



Different Types of Sequences

5

Notice:
• Although you can add any character to Seq, 

invalid characters can cause errors in the program 
when performing certain actions with biological meaning.
(e.g., Transcription, Translation…etc.)

Legal Chars: 'ATCG'

Legal Chars: 'UAGC'

Legal Chars:
'ACDEFGHIKLMNPQRSTVWY'

ATCG
UAGC
MELKILV
ATNNNCG
ATC--GCA

Output:



Practice

• Construct Different Types of Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

6

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


BASIC OPERATIONS FOR 
SEQUENCES

7



Add Two Sequences

8

AATCCGAT
AATCCGATCG
AATCCGATAGCG
MELKILVAATCCGAT
AATCCGATUAGC



Practice

• Add Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

9

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Multiply Sequences with Integer

10

AATCAATCAATC
MELKILVMELKILV

Multiply = Repeat



Practice

• Multiply Sequences by Integers
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

11

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Compare Sequences

12

True
True
True
False
True



Practice

• Comparing Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

13

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Slice a Sequence

• “Slicing” = The Way to Get a “Sub-Sequence”

14

“ATCCGATGCACCAG”
0 1 2 3 4 5 6 7 8 9 10 11 12 13

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Notice:
• Python is “0-based” (0~13)
• NCBI sequences are “1-based” (1~14)



Slice a Sequence

15

T
C
GATGGGCC
GCTGTAGTAAG
AGGCATGCATC
TAGCTAAGAC
CGCTAAAAGCTAGGATATATCCGGGTAGCTAG



Practice

• Slicing a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

16

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Iterate a Sequence

• Iteration = Take 1 letter a time from the Sequence

17

G
A
T
C
...

0 G
1 A
2 T
3 C
...



Practice

• Iterating a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

18

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


FUNCTIONS APPLYING FOR 
SEQUENCES

19



Length of a Sequence

20

32 Characters

32



Practice

• Get the Length of a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

21

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Change the Case

22

gatcgatgggcctatataggatcgaaaatcgc

GATCGATGGGCCTATATAGGATCGAAAATCGC
gatcgatgggcctatataggatcgaaaatcgc



Practice

• Chage the Case of Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

23

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Check for Containing

24

1 Create a Sequence

2 Sequence <compare> Sequence

3 String <compare> Sequence



Practice

• Check for Containing
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

25

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Count the Occurrence

• Non-overlapped Counting

26

.count("A")

AAAATCCGCGATAGC → 6

.count("AA")

AAAATCCGCGATAGC → 2

.count("AA“, 2, -1)

AAAATCCGCGATAGC → 1

2 -1



Count the Occurrence

• Overlapped Counting

27

.count_overlap("AA")

AAAATCCGCGATAGC → 3

.count_overlap("A")

AAAATCCGCGATAGC → 6

.count_overlap("AA“, 2, -1)

AAAATCCGCGATAGC → 1

2 -1



Count the Occurrence

• Count for GC%

28

Manual calculation

Using the library



Practice

• Count the Occurrence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

29

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Find Sequence Patterns

• Find Forwardly: .find()

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

→ 6

→ 2 (6~7, 8~9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

start =
head

↓

end =
-1
↓

found_index
↓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

found_index
↓

+ len(“CG”)

start =
head
↓

end =
-1
↓



Practice

• Find Sequence Patterns Forwardly
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

31

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Find Sequence Patterns

• Find Backwardly: .rfind()

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

→ 8

→ 2 (6~7, 8~9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

start
↓

end =
tail
↓

found_index
↓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A A A A T C C G C G A T A G C

start
↓

end = tail =
found_index
↓

↑
next found



Practice

• Find Sequence Patterns Backwardly
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

33

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Find Sequence Patterns

• Check for Start Codons & Stop Codons

34

Check Start Codon

Check Start Codon 
at Specific Location

Check all Start Codons

Check all Stop Codons



Practice

• Check for Start Codons & Stop Codons
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

35

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Split & Join Sequences

• Biological Meanings of Split & Join

36



Split & Join Sequences

• Split a Sequence

37

AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG

[Seq('AU'), Seq('AUUGUAAUG'), Seq('GCUGAAAGGGUGCCCGAUAGUUG')]



Split & Join Sequences

• Join Sequences

38

Exons = [Seq('AU'), Seq('AUUGUAAUG'), Seq('GCUGAAAGGGUGCCCGAUAGUUG')]

AUAUUGUAAUGGCUGAAAGGGUGCCCGAUAGUUG

mRNA1 =

AUNNNAUUGUAAUGNNNGCUGAAAGGGUGCCCGAUAGUUG

mRNA2 =



Practice

• Split & Join Sequences
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

39

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Strip Spaces or Other Symbols

• What is “Strip”?

40

• Why “Strip”?

– Remove unwanted characters from both sides of the 
sequence.

Please enter sequence: ▒ ▒ ▒ATGCGATTACG ▒

ATGCGATTACG

spaces spaces



Strip Spaces or Other Symbols

41

Please enter sequence: ▒ ▒ ATGGCGAG ▒
Before Strip: ▒ ▒ ATGGCGAG ▒
After Strip: ATGGCGAG

Before Strip: ---ATGCGACCGA-
After Strip: ATGCGACCGA



Practice

• Strip Spaces or Other Symbols
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

42

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


BIOLOGICAL OPERATIONS FOR 
SEQUENCES

43



Ungap a Sequence

• What is “Ungap”?

44

- Return a copy of the sequence without the gap character(s).

-ATA--TGAAAT-TTGAAAA ATATGAAATTTGAAAA

CGGGTAG=AAAAAA CGGGTAGAAAAAA



Ungap a Sequence

45

Before Ungapped: -ATA--TGAAAT-TTGAAAA
After Ungapped: ATATGAAATTTGAAAA

Before Ungapped: CGGGTAG=AAAAAA
After Ungapped: CGGGTAGAAAAAA



Practice

• Ungap a Sequence
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

46

(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Transcription

• What is Transcription?

47

Forward
Transcription

Backward
Transcription



Transcription

• Forward Transcription

48

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
3' TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5' : Template Strand
5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA

Transcribe Protein Sequence: MAIVMGR

Transcribe on Protein Sequence
will be ignored



Transcription

• Backward Transcription

49

5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA
5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Backward Transcription

Backward Transcription of Protein Sequence: MAIVMGR
Backward Transcribe on 

Protein Sequence will be ignored



Practice

• Transcription
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

50
(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Translation

51

Translation Table
(from NCBI)

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi


Translation

• Syntax of .translate() Function

52

.translate(table='Standard', stop_symbol='*', to_stop=False, cds=False)

• table: Specify which codon table to use (string or integer)

• stop_symbol: Specify which character to represent the stop codon.

• to_stop: Translation is stopped at the first stop codon or not.

• cds: Sequence is started with start codon, ended with stop codon, 

and is a multiple of 3 or not.



Translation

• Translate with DNA + Standard Table

53

5' ATGGCCATTGTGATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
5' AUGGCCAUUGUGAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA

Create a Sequence

Translate (DNA, Standard): MAIVMGR*KGAR*

Translate with DNA + Standard Table



Translation

• Other Operations of Translation

54

Translate (DNA, Stop='@'): MAIVMGR@KGAR@

Change the Symbol

Translate (DNA, Until Stop): MAIVMGR

Translate until Stop Codon

Translate (RNA, Standard): MAIVMGR*KGAR*

Change the Symbol



Translation

• Translate with Other Table

55

Translate (DNA, Table=2): MAIVMGRWKGAR*

5' GTGATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Sub-Coding Sequence

Translate (DNA, Table=2, CDS): MMGRWKGAR



Practice

• Translation
– Write and Run the left codes on a Colab

page called “SeqObjects.ipynb”:

56
(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


MODIFIABLE SEQUENCES

57



Problem of Modifying Sequence

58

TypeError: 'Seq' object does not support item assignment

→ Bio.Seq.Seq is an “Immutable” object
(Immutable = Not allow to change it partially)



Practice

• Test for the Problem of Bio.Seq.Seq Modification
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

59
(Solution URL of this Practice)

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Solution: Bio.Seq.MutableSeq

• About Bio.Seq.MutableSeq
– A Sequence object that can be modified partially.

• Possible Operations

60

Comparison: ==, !=, <, <=, >, >= Insert: seq.insert(8,'G')

Length: len() Remove: seq.remove('A')

Partially Change: seq[5] ='T' Count: seq.count("ATG")

Partially Delete: del seq[5] Reverse: seq.reverse()

Concatenation (Add): seq = seq + "GCG" Complement:
seq.complement()
seq.reverse_complement()

Duplication (Multiple): seq = seq * 3



Conversion of MutableSeq

61

String → MutableSeq

str_seq = "GCCATTGTA"

mutable_seq = MutableSeq(str_seq)

MutableSeq → String

mutable_seq = MutableSeq("GCCATTGTA")

str_seq = str(mutable_seq)

Seq → MutableSeq

seq = Seq("GCCATTGTA")

mutable_seq = MutableSeq(seq)

mutable_seq = seq.tomutable()

MutableSeq → Seq

mutable_seq = MutableSeq("GCCATTGTA")

seq = Seq(mutable_seq)

seq = mutable_seq.toseq()



Practice

• Example for Bio.Seq.MutableSeq
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

62
(Solution URL of this Practice)

5' GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA 3' : Original DNA
5' GCCATGGTAATGGGCCGCTGAAAGGGTGCCCGA 3' : DNA after Mutation
3' AGCCCGTGGGAAAGTCGCCGGGTAATGGTACCG 5' : DNA after Mutation & Reverse

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


BIOLOGICAL FUNCTIONS FOR 
STRINGS

63



Biological Functions for Strings

• What do these functions do?

– When you want to perform some Biological Operations (e.g., transcribe, 
translate...etc.) directly on a "string" instead of using Seq or MutableSeq
objects.

• What functions are available?

– complement()

– reverse_complement()

– transcribe()

– back_transcribe()

– translate()

64



Example

65

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
3' TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5' : Template Strand

5' CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT 3' : Template Strand

5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Backward Transcription

Protein Sequence: MAIVMGRWKGAR@



Practice

• Biological Functions for Strings
– Write and Run the following codes on a Colab page called “SeqObjects.ipynb”:

66
(Solution URL of this Practice)

5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Coding Strand
3' TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5' : Template Strand
5' CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT 3' : Template Strand
5' AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3' : mRNA
5' ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3' : Backward Transcription
Protein Sequence: MAIVMGRWKGAR@

https://colab.research.google.com/drive/15mmS8j5KFwMf7_0oxHvZkiCmyAckJ5J-?usp=sharing


Homework

• Parse the FASTA file of E. Coli

– Please go to the URL: https://bit.ly/3wHQ6Iu

– Read the requirements listed on the above URL.

– Create your own Colab page and start to implement the requirements.

– When you finished, click “Share” button at the upper-right.

– Click “Get Link” > “Copy Link” from the pop-up window.

– Send your page’s link to Google Classroom as the result of this 
homework.

67

https://bit.ly/3wHQ6Iu


Summary

• Create a Sequence

– dna_seq = Seq("ATCG")

• Basic Operations

– Add: Seq("AATC") + Seq("CGAT")

– Multiple: Seq("AATC") * 3

– Compare: Seq("ATCG") != Seq("GGCC")

– Slicing: Seq("GATCGA")[0:4:2]

– Iterate:

• for letter in my_seq:

• for index, letter in enumerate(my_seq):

• Functions Applying for Sequences

– Length: len(my_seq)

– Case: my_seq.lower(), my_seq.upper()

– Contain: Seq("AAA") in my_dna

– Count:

• Non-overlapped: my_seq.count("AA")

• Overlapped: my_seq.count_overlap("AA")

• GC%: Bio.SeqUtils.GC(my_seq)

– Find: find(), rfind(), startswith(), endswith()

– Split & Join:

• Pre_mRNA.split("GGCC")

• "".join([Seq('AU'), Seq('AUUGUT')])

– Strip: my_seq.strip("-")

68



Summary

• Biological Operations
– Ungap: my_seq.ungap("-")
– Transcription:

• coding_dna.transcribe()
• protein.back_transcribe()

– Translation: coding_dna.translate(table=2, stop_symbol="@")

• Bio.Seq.MutableSeq
– Create: mutable_seq = MutableSeq(my_seq)
– Mutation: mutable_seq[5] = "G"
– Reverse: mutable_seq.reverse()

• Biological Functions for Strings
– complement()
– reverse_complement()
– transcribe()
– back_transcribe()
– translate()

69


	Slide1
	Agenda
	Create a Biological Sequence�
	Introduction to Bio.Seq.Seq
	Different Types of Sequences
	Practice
	Basic Operations for Sequences
	Add Two Sequences
	Practice
	Multiply Sequences with Integer
	Practice
	Compare Sequences
	Practice
	Slice a Sequence
	Slice a Sequence
	Practice
	Iterate a Sequence
	Practice
	Functions Applying for Sequences
	Length of a Sequence
	Practice
	Change the Case
	Practice
	Check for Containing
	Practice
	Count the Occurrence
	Count the Occurrence
	Count the Occurrence
	Practice
	Find Sequence Patterns
	Practice
	Find Sequence Patterns
	Practice
	Find Sequence Patterns
	Practice
	Split & Join Sequences
	Split & Join Sequences
	Split & Join Sequences
	Practice
	Strip Spaces or Other Symbols
	Strip Spaces or Other Symbols
	Practice
	Biological Operations for Sequences
	Ungap a Sequence
	Ungap a Sequence
	Practice
	Transcription
	Transcription
	Transcription
	Practice
	Translation
	Translation
	Translation
	Translation
	Translation
	Practice
	Modifiable Sequences
	Problem of Modifying Sequence
	Practice
	Solution: Bio.Seq.MutableSeq
	Conversion of MutableSeq
	Practice
	Biological Functions for Strings
	Biological Functions for Strings
	Example
	Practice
	Homework
	Summary
	Summary

