# Chapter 07. Machine Learning

**Python Programming for Bioinformatics** 

Witter Ver. Star. P.

Robert C. Chi



- Introduction
- The Flow of Machine Learning Programs
- Classification
  - Logistic Regression
  - Naive Bayes Classifier
- Clustering
  - k-Means Clustering
- Summary





# INTRODUCTION

What is Machine Learning Program?

Regular Programs





What is Machine Learning Program?

Machine Learning Programs



### What Machine Learning Can Do?

Classification

### Clustering

| -53<br>117<br>57<br>16<br>11<br>85 |                                                                       |                                                                       | -200.78<br>-267.14<br>-163.47<br>-190.30<br>-220.94                                    |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
|------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 117<br>57<br>16<br>11<br>85        |                                                                       |                                                                       | -267.14<br>-163.47<br>-190.30<br>-220.94                                               |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 57<br>16<br>11<br>85               |                                                                       |                                                                       | -163.47<br>-190.30<br>-220.94                                                          |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 16<br>11<br>85                     |                                                                       |                                                                       | -190.30<br>-220.94                                                                     |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 11<br>85                           |                                                                       |                                                                       | -220.94                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 85                                 |                                                                       |                                                                       |                                                                                        |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 10                                 |                                                                       |                                                                       | -193.94                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 10                                 |                                                                       |                                                                       | -182.71                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 15                                 |                                                                       |                                                                       | -180.41                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| -26                                |                                                                       |                                                                       | -181.73                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 58                                 |                                                                       |                                                                       | -259.87                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 126                                |                                                                       |                                                                       | -414.53                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 191                                |                                                                       |                                                                       | -249.57                                                                                | Sam                                                                                                                               | 0 0 n                                                                                                                                                              | ron2                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 113                                |                                                                       |                                                                       | -265.28                                                                                | Jam                                                                                                                               | e ope                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 145                                |                                                                       | Promote                                                               | ər                                                                                     | Operator                                                                                                                          | Structure                                                                                                                                                          | al cene(s)                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 154                                | ~                                                                     | Tromot                                                                |                                                                                        |                                                                                                                                   |                                                                                                                                                                    | a gene(o)                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 147                                |                                                                       |                                                                       |                                                                                        |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
| 93                                 |                                                                       |                                                                       | -291.13                                                                                |                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
|                                    |                                                                       |                                                                       |                                                                                        | /                                                                                                                                 |                                                                                                                                                                    | <b>`</b>                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
|                                    |                                                                       |                                                                       |                                                                                        | *                                                                                                                                 |                                                                                                                                                                    | 7                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |
|                                    |                                                                       |                                                                       |                                                                                        | Ves                                                                                                                               |                                                                                                                                                                    | No                                                                                                                                                                                           | <b>)</b>                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                   |
|                                    | 16<br>15<br>-26<br>58<br>126<br>191<br>113<br>145<br>154<br>147<br>93 | 16<br>15<br>-26<br>58<br>126<br>191<br>113<br>145<br>154<br>147<br>93 | 16<br>16<br>15<br>-26<br>58<br>126<br>191<br>113<br>145<br>Promote<br>154<br>147<br>93 | 16182.71<br>15180.41<br>-26181.73<br>58259.87<br>126 - 414.53<br>191249.57<br>113265.28<br>145 Promoter<br>154<br>147<br>93291.13 | 16 - 182.71<br>15 - 180.41<br>-26 - 181.73<br>58 - 259.87<br>126 - 414.53<br>191 - 249.57 Samo<br>145 Promoter Operator<br>147<br>147<br>147<br>93 - 251.13<br>Yes | 16     -182.71       15     -180.41       -26     -181.73       58     -259.87       126     -414.53       191     -249.57       13     -265.28       145     Promoter       154     -291.13 | 16     -182.71       15     -180.41       -26     -181.73       58     -259.87       126     -414.53       191     -249.57       13     -265.28       145     Promoter       154     Promoter       154     Operator       154     Structural gene(s)       147     93       -231.13     -231.13 | 16       -182.71         15       -180.41         -26       -181.73         58       -259.87         126       -414.53         191       -249.57         133       -265.28         145       Promoter       Operator         154       -201.13         147       -201.13         93       -201.13 |

#### **Microarray Gene Expression**



#### → Which genes are expressed together?



# THE FLOW OF MACHINE LEARNING PROGRAMS

# Step 1: Collect Data

|              |                 |     | Feature1   | Feature2             | Feature3  | Feature4            |                              |
|--------------|-----------------|-----|------------|----------------------|-----------|---------------------|------------------------------|
| <b></b>      |                 |     | A          | В                    | С         | D                   |                              |
| Jvv =        |                 | 1   | Country    | Age                  | Salary    | ToBuy               |                              |
| ᆘᄷᅴᅴ         | Feature Vector1 | 2   | France     | 44                   | 72000     | No                  |                              |
|              | Feature Vector2 | 3   | Spain      | 27                   | 48000     | Yes                 |                              |
| Web Crawlers | Feature Vector3 | 4   | Germany    | 30                   | 54000     | No                  |                              |
|              | Feature Vector4 | 5   | Spain      | 38                   | 61000     | No                  |                              |
|              |                 | 6   | Germany    | 40                   |           | Yes                 |                              |
|              |                 | 7   | France     | 35                   | 58000     | Yes                 |                              |
|              |                 | 8   | Spain      |                      | 52000     | No                  |                              |
|              |                 | 9   | France     | 48                   | 79000     | Yes                 | Feature Matrix               |
| J            |                 | 10  | Germany    | 50                   | 83000     | No                  |                              |
|              |                 | 11  | France     | 37                   | 67000     | Yes                 |                              |
| Databases    |                 |     | In         | depende<br>Variables | nt        | Depende<br>Variable | nt<br>s                      |
|              | loBuy           | = a | · · (Count | : <b>ry</b> ) + b ⋅  | (Age) + ( | ∶ · (Salar          | <b>y</b> ) a, b, c = Weights |

# Step 2: Missing Data Makeup

#### Strategies

| 4  | A       | В     | С        | D     |
|----|---------|-------|----------|-------|
| 1  | Country | Age   | Salary   | ToBuy |
| 2  | France  | 44    | 72000    | No    |
| 3  | Spain   | 27    | 48000    | Yes   |
| 4  | Germany | 30    | 54000    | No    |
| 5  | Spain   | 38    | 61000    | No    |
| 6  | Germany | 40    | 63777.78 | Yes   |
| 7  | France  | 35    | 58000    | Yes   |
| 8  | Spain   | 38.78 | 52000    | No    |
| 9  | France  | 48    | 79000    | Yes   |
| 10 | Germany | 50    | 83000    | No    |
| 11 | France  | 37    | 67000    | Yes   |

#### Delete

– Used When Dataset is Very Large.

#### Average

- Take the Average of That Feature.
- Good for Real Numbers

#### Median

.

- Take the Median of That Feature.
- Good for Integers

#### Mode (The Most Frequent Value)

- Take the Most Frequently Value of That Feature.
- Good for Categorical Data.

### Step 3: Digitalize Categorical Data

### • "Category Data" cannot be calculated → Digitalize

| 1  | A       | В   | С      | D     |
|----|---------|-----|--------|-------|
| 1  | Country | Age | Salary | ToBuy |
| 2  | France  | 44  | 72000  | No    |
| 3  | Spain   | 27  | 48000  | Yes   |
| 4  | Germany | 30  | 54000  | No    |
| 5  | Spain   | 38  | 61000  | No    |
| 6  | Germany | 40  |        | Yes   |
| 7  | France  | 35  | 58000  | Yes   |
| 8  | Spain   |     | 52000  | No    |
| 9  | France  | 48  | 79000  | Yes   |
| 10 | Germany | 50  | 83000  | No    |
| 11 | France  | 37  | 67000  | Yes   |

| 1  | Α       | В     | С        | D     |
|----|---------|-------|----------|-------|
| 1  | Country | Age   | Salary   | ToBuy |
| 2  | 1       | 44    | 72000    | 0     |
| 3  | 2       | 27    | 48000    | 1     |
| 4  | 3       | 30    | 54000    | 0     |
| 5  | 2       | 38    | 61000    | 0     |
| 6  | 3       | 40    | 63777.78 | 1     |
| 7  | 1       | 35    | 58000    | 1     |
| 8  | 2       | 38.78 | 52000    | 0     |
| 9  | 1       | 48    | 79000    | 1     |
| 10 | 3       | 50    | 83000    | 0     |
| 11 | 1       | 37    | 67000    | 1     |

### Step 4: Choose the Algorithm



# Step 5: Train Your Model



### Step 6: Use the Model for Predict



### **Brief of this Section**





**Classification** 

# LOGISTIC REGRESSION

### How Logistic Regression Works?

#### **Training Data**

| Gene pair   | Intergene distance | Gene expression score | Class |
|-------------|--------------------|-----------------------|-------|
| cotJA-cotJB | -53                | -200.78               | 1     |
| yesK-yesL   | 117                | -267.14               | 1     |
| IpIA-IpIB   | 57                 | -163.47               | 1     |
| IpIB-IpIC   | 16                 | -190.30               | 1     |
| IpIC-IpID   | 11                 | -220.94               | 1     |
| lpID-yetF   | 85                 | -193.94               | 1     |
| yfmT-yfmS   | 16                 | -182.71               | 1     |
| yfmF-yfmE   | 15                 | 180.41                | 1     |
| citS-citT   | -26                | 101.73                | 1 🖌   |
| citM-yfIN   | 58 Indepen         | defit Variables       | 1     |
| yfil-yfiJ   | 126                | -414.53               | 0     |
| lipB-yfiQ   | 191                | -249.57               | 0     |
| yfiU-yfiV   | 113                | -265.28               | 0     |
| yfhH-yfhl   | 145                | -312.99               | 0     |
| cotY-cotX   | 154                | -213.83               | 0     |
| yjoB-rapA   | 147                | -380.85               | 0     |
| ptsI-spIA   | 93                 | -291.13               | 0     |

#### $\boldsymbol{y} = \boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{X}_1 \cdots \boldsymbol{c}_n \boldsymbol{X}_n$

- X<sub>1</sub>: Inter-gene Distance
- X<sub>2</sub>: Gene Expression Score
- **C**<sub>i</sub> : Parameters to be Estimated
- **y**: At the Same Operon (True/False).

*X<sub>i</sub>*: Continuous Numbers*y*: Discrete Numbers



#### **Sigmoid Function**

$$p = \frac{1}{1+e^{-Y}} \rightarrow Y = ln\left(\frac{p}{1-p}\right)$$



$$ln\left(\frac{p}{1-p}\right) = c_0 + c_1 X_1 \cdots c_n X_n$$

### How Logistic Regression Works?

$$ln\left(\frac{p}{1-p}\right) = c_0 + c_1X_1 + c_2X_2$$



Threshold P = 0.5

$$\mathbf{Y} = \begin{cases} 0 & if \ \mathbf{p} \le 0.5 \\ 1 & if \ \mathbf{p} > 0.5 \end{cases}$$

$$\mathbf{X}_1 = 2 \rightarrow \mathbf{P} = 0.13 \rightarrow \mathbf{Y} = 0$$

$$\mathbf{X}_2 = 4 \rightarrow \mathbf{P} = 0.22 \rightarrow \mathbf{Y} = 0$$

$$X_3 = 6 \rightarrow P = 0.68 \rightarrow Y = 1$$

$$X_4 = 8 \rightarrow P = 0.95 \rightarrow Y = 1$$

#### Logistic Regression

• Only Support for Binary Classification.

### **Pre-processing**

```
import os
 2
   # Download the CSV File for known Bacillus subtilis operons
 3
   if not os.path.isfile("Bacillus subtilis operons.csv"):
 4
     os.system("wget -c https://bit.ly/31M0aou -O Bacillus subtilis operons.csv")
 5
 6
   # Load Dataset
 7
   import pandas as pd
 8
                                                             dataset =
   dataset = pd.read csv("Bacillus subtilis operons.csv")
 9
10
11
   # Decompose dataset as X and Y
   X = dataset.iloc[:, 1:3].values
12
   Y = dataset.iloc[:, 3].values
13
```

| Gene pair  | Intergene distance | Gene expression score | Class |
|------------|--------------------|-----------------------|-------|
| otJA-cotJB | -53                | -200.78               | 1     |
| esK-yesL   | 117                | -267.14               | 1     |
| pIA-IpIB   | 57                 | -163.47               | 1     |
| pIB-IpIC   | 16                 | -190.30               | 1     |
| pIC-lpID   | 11                 | -220.94               | 1     |
| pID-yetF   | 85                 | -193.94               | 1     |
| fmT-yfmS   | 16                 | -182.71               | 1     |
| fmF-yfmE   | 15                 | -180.41               | 1     |
| itS-citT   | -26                | - 1.73                | 1 1   |
| itM-yflN   | 58                 | -259.87               | 1     |
| fil-yfiJ   | 126                | -414.53               | 0     |
| pB-yfiQ    | 191                | -249.57               | 0     |
| fiU-yfiV   | 113                | -265.28               | 0     |
| fhH-yfhl   | 145                | -312.99               | 0     |
| otY-cotX   | 154                | -213.83               | 0     |
| joB-rapA   | 147                | -380.85               | 0     |
| tsl-splA   | 93                 | -291.13               | 0     |



- Pre-processing Data for Logistic Regression
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
import os
 2
   # Download the CSV File for known Bacillus subtilis operons
   if not os.path.isfile("Bacillus subtilis operons.csv"):
 4
      os.system("wget -c https://bit.ly/31M0aou -O Bacillus subtilis operons.csv")
 5
 6
   # Load Dataset
   import pandas as pd
 8
   dataset = pd.read_csv("Bacillus_subtilis_operons.csv")
 9
10
   # Decompose dataset as X and Y
11
12 X = dataset.iloc[:, 1:3].values
13 Y = dataset.iloc[:, 3].values
```



#### (Solution URL of this Practice)







```
yxcE-yxcD: 1
# Predict User Input Data
yxiB-yxiA: 0
# yxcE-yxcD, X=[6, -173.143442352]
print("yxcE-yxcD:", LogisticRegression.classify(model, [6, -173.143442352]))
# yxiB-yxiA, X=[309, -271.005880394]
print("yxiB-yxiA:", LogisticRegression.classify(model, [309, -271.005880394]))
```



- Training & Predicting for Logistic Regression
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
# Training
 2 from Bio import LogisticRegression
   model = LogisticRegression.train(X, Y)
 3
   # Show Model Coefficients
   print(model.beta)
 6
 8
   # Predict User Input Data
 9
   # vxcE-vxcD, X=[6, -173.143442352]
10
   print("yxcE-yxcD:", LogisticRegression.classify(model, [6, -173.143442352]))
11
12
13
   # yxiB-yxiA, X=[309, -271.005880394]
14 print("yxiB-yxiA:", LogisticRegression.classify(model, [309, -271.005880394]))
```





### **Performance Measurement**

```
# Show the confidence for predictions
 2
   # yxcE-yxcD
    q 0, p 1 = LogisticRegression.calculate(model, [6, -173.143442352])
   print("Adjacent Gene: yxcE-yxcD")
                                                                        Adjacent Gene: yxcE-yxcD
    print("Confidence of Probability for 1: {:.2%}".format(p_1))
                                                                        Confidence of Probability for 1: 99.32%
    print("Confidence of Probability for 0: {:.2%}".format(q 0))
                                                                        Confidence of Probability for 0: 0.68%
 8
   # yxiB-yxiA
 9
    q 0, p 1 = LogisticRegression.calculate(model, [309, -271.005880394])
10
   print("Adjacent Gene: yxiB-yxiA")
11
                                                                        Adjacent Gene: yxiB-yxiA
   print("Confidence of Probability for 1: {:.2%}".format(p 1))
12
    print("Confidence of Probability for 0: {:.2%}".format(q 0))
                                                                        Confidence of Probability for 1: 0.03%
13
                                                                        Confidence of Probability for 0: 99.97%
```



- Performance Measurement for Logistic Regression
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
# Show the confidence for predictions
 1
 2
 3
   # yxcE-yxcD
   q_0, p_1 = LogisticRegression.calculate(model, [6, -173.143442352])
   print("Adjacent Gene: yxcE-yxcD")
   print("Confidence of Probability for 1: {:.2%}".format(p 1))
   print("Confidence of Probability for 0: {:.2%}".format(q 0))
 8
   # vxiB-vxiA
 9
   q 0, p 1 = LogisticRegression.calculate(model, [309, -271.005880394])
10
   print("Adjacent Gene: yxiB-yxiA")
11
   print("Confidence of Probability for 1: {:.2%}".format(p 1))
12
13 print("Confidence of Probability for 0: {:.2%}".format(q 0))
```



#### (Solution <u>URL</u> of this Practice)





Classification

# **NAÏVE BAYES CLASSIFIER**

# How Naïve Bayes Works?



### **Pre-processing**

| 1 | from sklearn.datasets            | import | load_iris |
|---|----------------------------------|--------|-----------|
| 2 |                                  |        |           |
| 3 | <pre>dataset = load_iris()</pre> |        |           |

| Key           | Туре    | Size     | Value                                                                    |
|---------------|---------|----------|--------------------------------------------------------------------------|
| DESCR         | str     | 1        | iris_dataset:                                                            |
| data          | float64 | (150, 4) | [[5.1 3.5 1.4 0.2]<br>[4.9 3. 1.4 0.2]                                   |
| feature_names | list    | 4        | ['sepal length (cm)', 'sepal width (cm)',<br>'petal length (cm)', 'petal |
| filename      | str     | 1        | D:\bin\anaconda3\lib\site-packages<br>\sklearn\datasets\data\iris.csv    |
| target        | int32   | (150,)   | [0 0 0 2 2 2]                                                            |
| target_names  | str320  | (3,)     | ndarray object of numpy module                                           |
|               |         |          |                                                                          |
|               |         |          |                                                                          |

#### DESCR (text)

•

- Description of this Dataset
- data (array)
  - Features (Independent Variables X)
- feature\_names (list)
  - Name of each feature
- target (array)
  - Dependent Variable Y
- target\_name (array)
  - Mapping of Y values and corresponding names
  - e.g., 0=setosa, 1=versicolor... etc.

### **Pre-processing**

V

| 1 | # Decompose as X and Y                             |
|---|----------------------------------------------------|
| 2 | X = dataset.data                                   |
| 3 | Y = dataset.target                                 |
| 4 | <pre>Y_types = dataset.target_names.tolist()</pre> |
|   |                                                    |

| ~            |             |              |             |       |
|--------------|-------------|--------------|-------------|-------|
| sepal length | sepal width | petal length | petal width | Class |
| 5.1          | 3.5         | 1.4          | 0.2         | 0     |
| 4.9          | 3.0         | 1.4          | 0.2         | 1     |
|              |             |              |             | 2     |



### Y\_types

#### [0] [1] [2] ['setosa', 'versicolor', 'virginica']

\/

![](_page_28_Picture_0.jpeg)

- Pre-processing Data for Naïve Bayes Classifier
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

![](_page_28_Figure_3.jpeg)

![](_page_28_Picture_4.jpeg)

#### (Solution <u>URL</u> of this Practice)

**Training & Predicting** 

```
from Bio import NaiveBayes
2
                                                        2 virginica
 3
   # Training
   model = NaiveBayes.train(X, Y)
4
                                                        0 setosa
 5
   # Predict
 6
   pred1 = NaiveBayes.classify(model, [6.4, 3.8, 6.9, 1.8])
   print(pred1, Y_types[pred1])
8
 9
   pred2 = NaiveBayes.classify(model, [5.1, 3.0, 1.3, 0.2])
10
   print(pred2, Y types[pred2])
11
```

![](_page_30_Picture_0.jpeg)

- Training & Predicting for Naïve Bayes Classifier
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
from Bio import NaiveBayes
 1
 2
 3
   # Training
   model = NaiveBayes.train(X, Y)
 4
 5
 6
   # Predict
   pred1 = NaiveBayes.classify(model, [6.4, 3.8, 6.9, 1.8])
   print(pred1, Y_types[pred1])
 8
 9
   pred2 = NaiveBayes.classify(model, [5.1, 3.0, 1.3, 0.2])
10
   print(pred2, Y types[pred2])
11
```

![](_page_30_Picture_4.jpeg)

#### (Solution URL of this Practice)

### **Performance Measurement**

![](_page_31_Figure_1.jpeg)

Log Likelihood #1: {0: -2075.950924627617, 1: -1389.780566915392, 2: -12.046223944588279} Log Likelihood #2: {0: -7.562297320431017, 1: -1388.394272554272, 2: -2074.852312338949}

![](_page_32_Picture_0.jpeg)

- Performance Measurement for Naïve Bayes Classifier
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
1 # Show the confidence for predictions
2 print("Log Likelihood #1:")
3 print(NaiveBayes.calculate(model, [6.4, 3.8, 6.9, 1.8]))
4
5 print("Log Likelihood #2:")
6 print(NaiveBayes.calculate(model, [5.1, 3.0, 1.3, 0.2]))
```

#### (Solution <u>URL</u> of this Practice)

![](_page_32_Picture_5.jpeg)

![](_page_33_Picture_0.jpeg)

## Clustering K-MEANS CLUSTERING

# What is "Clustering"?

| Genre  | Age   | Income (k\$) | Spending            |   |
|--------|-------|--------------|---------------------|---|
| Male   | 19    | 15           | 39                  |   |
| Male   | 21    | 15           | 81                  |   |
| Female | 20    | 16           | 6                   |   |
| Female | 23    | X 16         | 77                  | 2 |
| Female | penen | dent Varia   | ables <sup>40</sup> | • |
| Female | 22    | 17           | 76                  |   |
| Female | 35    | 18           | 6                   |   |
| Female | 23    | 18           | 94                  |   |
| Male   | 64    | 19           | 3                   |   |

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

Only has X, No Y Use Similarity (Distance) to do the job

a.k.a. "Non-Supervised Learning" (No Correct Answers)

# What is K-Means Clustering

![](_page_35_Picture_1.jpeg)

#### K = Optimized by Biopython Automatically

- Suppose to cluster as K groups, choose arbitrary K centroids.
- 2. Assign each sample to the nearest centroid.
- **3. Re-calculate all centroids for each group.**
- 4. Repeat (2) ~ (3).
- 5. If there is no change in group belonging for
  - all samples, the process ends.

### **Pre-processing**

```
1 # Sequences to be clustered
2 sequence = [ 'AGCT', 'CGTA', 'AAGT', 'TCCG']
3
4 # Digitalized Categorical Data
5 import numpy as np
6
7 matrix = np.asarray([np.fromstring(s, dtype=np.uint8) for s in sequence])
8 print(matrix)
```

![](_page_36_Picture_2.jpeg)

![](_page_37_Picture_0.jpeg)

- Pre-processing Data for K-Means Clustering
  - Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
1 # Sequences to be clustered
2 sequence = [ 'AGCT','CGTA','AAGT','TCCG']
3
4 # Digitalized Categorical Data
5 import numpy as np
6
7 matrix = np.asarray([np.fromstring(s, dtype=np.uint8) for s in sequence])
8 print(matrix)
```

![](_page_37_Picture_4.jpeg)

#### (Solution URL of this Practice)

![](_page_38_Picture_0.jpeg)

![](_page_38_Figure_1.jpeg)

Cluster Result for Each Sample: [1 0 1 0] Within Cluster Sum of Square (WCSS): 85.25 The number of times the solution was found: 1

![](_page_39_Picture_0.jpeg)

#### Clustering for K-Means

- Write and Run the following codes on a Colab page called "MachineLearning.ipynb":

```
1 from Bio.Cluster import kcluster
2
3 clusterid, error, found = kcluster(matrix)
4 print("Cluster Result for Each Sample:", clusterid)
5 print("Within Cluster Sum of Square (WCSS):", error)
6 print("The number of times the solution was found:", found)
```

#### (Solution URL of this Practice)

![](_page_39_Picture_5.jpeg)

![](_page_40_Picture_0.jpeg)

#### • What Machine Learning Can Do?

- Classification
- Clustering

#### Flow of Machine Learning Programs

- Collect Data
- Missing Data Makeup
- Digitalize Categorical Data
- Choose the Algorithm
- Train Your Model
- Use the Model for Predict

#### Classification

- Logistic Regression
- Naive Bayes Classifier
- Clustering
  - K-Means

![](_page_40_Picture_16.jpeg)