
Robert C. Chi

Python Programming for Bioinformatics

Chapter 05. Strings

Agenda

• Basic Operations

• Slicing

• Iteration

• Commonly Used Functions

• Regular Expression

• Example: DNA Comparison

2

BASIC OPERATIONS

3

What is a String

• Data composed by a series of characters

4

“abc”

Why Strings are Important?

• Almost all Bioinformatical Sequences are represented by Strings

5

Strings

Define a String

6

s = ‘’

s = “”

s = ‘abc’

s = “abc”

s = '''ATM Machine
1. Withdraw
2. Deposit
3. Balance
4. Quit'''

Empty Strings Regular Strings Multi-line Strings

Un-packing

• Decompose a String into Characters

7

x, y, z = “abc” # Specify respectively

x, _, z = “abc” # Only head and tail

x, *b, z = “abcde” # Get all the Rest

Concatenation

• “String1” + “String2”  “String1String2”

8

Repeats

• “String1” * 3 “String1String1String1”

9

Comparison

10

• “cat” < “dog”  True
• “cat” <= “dog”  True
• “cat” == “dog”  False
• “cat” != “dog”  True
• “cat” >= “dog”  False
• “cat” > “dog”  False

cat
…………
…………
dog
….

 “cat” < “Cat”  False

 “cat” == “Cat”  False

 “cat” > “Cat”  True

According: Dictionary Order

Inclusion

11

“abc” in “abcd”  True

“abc” in “abs”  False

SLICING

12

What is “Slicing”?

• The Way to Get “Sub-strings”

13

“This is a book”

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Syntax of Slicing

• s =

• s[0]  “a” # Get a Single Character

• s[2:7]  “cdefg” # Get Characters with Index [2], [3], [4], … [6]

• s[-6:-3]  “efg” # Get Characters with Negative Index [-6] ~ [-4]

• s[2:]  “cdefghij” # No Upper-bound = the End of String

• s[:7]  “abcdefg” # No Lower-bound = the Beginning of String

• s[2:7:2]  “ceg” # Get every 2 Character from [2] ~ [6] [2], [4], [6]

[start : end : step]  Get string from [start] ~ [end-1], every step characters

0 1 2 3 4 5 6 7 8 9

“ ”a b c d e f g h i j

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

14

Reuse the Slicing by Templates

• Save the Slicing as a Template then Reuse:

sc = slice(3, 12, 3)

Save Slicing as sc: Range [3] ~ [11], every 3 characters

DNA1 = “ATCCAGAGTTCG”
DNA1[sc]  “CAT”

DNA2 = “CGCCATGCTTGA”
DNA2[sc]  “CGT”

0 1 2 3 4 5 6 7 8 9
1
0

1
1

0 1 2 3 4 5 6 7 8 9
1
0

1
1

15

ITERATION

16

What is "Iteration"?

• Extract one character a time from a string.

“abc”

“a” “b” “c”

17

How to Iterate a String?

18

• for • iter() • enumerate()

Easy to Use Customize the Order
Return both Index

and Character

COMMONLY USED FUNCTIONS

19

Length, Maximum, Minimum

• Length

– len(“abcdefg”)  7

• Maximum & Minimum

– min(“abcdefg”)  “a”

– max(“abcdefg”)  “g”

20

Case Conversion

• All lowercase
– “This is a book”.lower() “this is a book”

• All uppercase
– “This is a book”.upper() “THIS IS A BOOK”

21

Content Detection

22

• All lowercase or not
– “book”.islower()  True

• All uppercase or not
– “BOOK”.isupper()  True

• All blank or not
– “ “.isspace()  True

• Contain only alphabets or
not
– “book”.isalpha()  True

• Contain only digits or not
– “123”.isdigit()  True

• Contain only alphabets
and digits or not
– “13books”.isalnum()  True

Search and Counting

23

• Find the index of the first

occurrence forwardly:

– “This is a book”.find(“is”)  2

– Not Found: Return -1

• Find the index of the first

occurrence backwardly:

– “This is a book”.rfind(“is”)  5

– Not Found: Return -1

• If starts with a specific text:

– “This is a book”

.startswith(“This”)  True

• If ends with a specific text:

– “This is a book”

.endswith(“book”)  True

• Calculate the number of

occurrence:

– “This is a book”.count(“is”)  2

Replace, Strip, Split, Join

24

• Replace
– “This is a book”.replace(“book”, “cat”)  “This is a cat”

• Strip
– “ This is a book “.strip()  “This is a book”
– Remove the spaces on left- and right-hand sides of a string.

• Split
– “This is a book”.split(“ “)  ['This', 'is', 'a', 'book’]

• Join
– s = “This is a book”.split(“ “)
– “-”.join(s)  “This-is-a-book”
– “ “.join(s)  “This is a book”

EXAMPLE: DNA COMPARISON

25

Description

• Identify the same "bases" from two DNA sequences
– DNA will consist of only four symbols: A, T, G, C

• Adenine (A), Thymine (T), Guanine (G), Cytosine (C)

– Suppose you got two sequences of DNA:
• DNA1： AATCGATCTCGAATTCAC

• DNA2： ATTCGTACTCGGATCCTC

– Please write a program that connects the same symbols as below:

26

A A T C G A T C T C G A A T T C A C

| | | | | | | | | | | |

A T T C G T A C T C G G A T C C T C

Analysis

[0]

A

|

A

[1]

A

T

[2]

T

|

T

[3]

C

|

C

[4]

G

|

G

[5]

A

T

[6]

T

A

[7]

C

|

C

[8]

T

|

T

[9]

C

|

C

…

G

|

G

A

G

A

|

A

T

|

T

T

C

C

|

C

A

T

C

|

C

DNA1 = "AATCGATCTCGAATTCAC "
similar = " "
DNA2 = "ATTCGTACTCGGATCCTC"

𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑖 = {
“ | ” 𝑖𝑓 𝐷𝑁𝐴1[𝑖] == 𝐷𝑁𝐴2[𝑖]

(𝑠𝑝𝑎𝑐𝑒) 𝑖𝑓 𝐷𝑁𝐴1 𝑖 ! = 𝐷𝑁𝐴2[𝑖]
i = 0, 1, 2, …

i

… …

27

Source Code

28

Improvement (1)

• Calculate Similarity

– Requirement:

• Please calculate the similarity of the two DNA
sequences.

– Hint:

• similarity = similar.count(“|”) / len(similar) x 100%

29

Source Code

30

Improvement (2)

31

• Allows users to enter their own DNA sequences

– DNA1 = input("Enter DNA1: ")

– DNA2 = input("Enter DNA2: ")

• The input DNA symbols are case insensitive

– DNA1 = input("Enter DNA1: ").upper()

– DNA2 = input("Enter DNA2: ").upper()

• DNA sequences can be different length

Improvement (2)

32

• Check the symbols entered by users are only in A, T, C, G

	Slide1
	Agenda
	Basic Operations
	What is a String
	Why Strings are Important?
	Define a String
	Un-packing
	Concatenation
	Repeats
	Comparison
	Inclusion
	Slicing
	What is “Slicing”?
	Syntax of Slicing
	Reuse the Slicing by Templates
	Iteration
	What is "Iteration"?
	How to Iterate a String?
	Commonly Used Functions
	Length, Maximum, Minimum
	Case Conversion
	Content Detection
	Search and Counting
	Replace, Strip, Split, Join
	Example: DNA Comparison
	Description
	Analysis
	Source Code
	Improvement (1)
	Source Code
	Improvement (2)
	Improvement (2)

