
Robert C. Chi

Python Programming for Bioinformatics

Chapter 06. Compound Data Types

Agenda

• Introduction

• Tuple

• List

• Dictionary (Dict)

• Set

2

INTRODUCTION

3

What is "Compound Data Type"?

• The data type combining several "Literals"

4

(3, 18, 25) (3, “abc”, True)

Categories

Immutable

Mutable

5

List Dict Set

Tuple

Categories

• What is "Immutable"?

– The old memory will be discarded when there is any modification.

– i.e., “Once a memory was created, it will never be changed.”

6

…

(3, 15, 7) 10000

(3, 15, 7, 23) 10200

X

TUPLE

7

What is "Tuple"?

• A set of literals enclosed by () and delimited by ,

8

(3, 18, 25) (3, “abc”, True) (“Bob”, (67, 82))

Tuple with Same
Types of Literals

Tuple with Different
Types of Literals

Tuple with
Nested Tuples

Create a Tuple

• Empty Tuples
– t = ()

– t = tuple()

• Tuples with Single Element
– t = “dog”,  "comma" is mandatory, otherwise variable t will become a string

– t = (“dog”,)  "comma" is mandatory. You may check data type by type() command

• Regular Tuples
– t = “dog”, “cat”

– t = (“dog”, “cat”)

9

Un-packing & Exchange

• Un-packing
– x, y, z = (3, 19, 23)
– x 3, y 19, z 23

• Exchange of Values
– x = 3; y = 19
– y, x = x, y
– y 3, x 19

10

Concatenation & Repeats

• Concatenation

– (2, 3) + (4, 5) (2, 3, 4, 5)

• Repeats

– (2, 3) * 3 (2, 3, 2, 3, 2, 3)

11

Inclusion = in

2 in (2, 3, 4)  True

(2, 3) in (2, 3, 4)  False

12

Slicing

• t = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

• t[0]  0

• t[2:7]  (2, 3, 4, 5, 6)

• t[-6:-3]  (4, 5, 6)

• t[2:]  (2, 3, 4, 5, 6, 7, 8, 9)

• t[:7]  (0, 1, 2, 3, 4, 5, 6)

• t[2:7:2]  (2, 4, 6)

• sc = slice(2, 7, 2)
t[sc]  (2, 4, 6)

13

Length, Max & Min, Summation

• Length
– len((1, 2, 3, 4, 5))  5

• Maximum & Minimum
– min((1, 2, 3, 4, 5))  1
– max((1, 2, 3, 4, 5))  5

• Summation
– sum((1, 2, 3, 4, 5))  15

14

LIST

15

What is "List"?

• Similar to "Tuple" but surround elements by [].

[3, 18, 25] [3, “abc”, True] [“Bob”, [67, 82]]

List with Same
Types of Literals

List with Different
Types of Literals

List with Nested
Lists or Tuples

16

Difference with Tuple

17

• It’s Mutable • Larger Memory Allocation

list1 = [3, 18, 25] +

• insert function

• modify function

• delete function

Provides a set of functions
to change contents

Note：
• The original address could be changed or maintained

after altering the contents. It depends on the system.

Tuple

List

Create a List

18

• Empty Lists

– lst = []

– lst = list()

• Regular Lists

– lst = [3, 18, 25]

• Lists with Various Data Types

– lst = [3, “abc”, True]

• Nested Lists

– lst = [3, “abc”, [25, 6]]

– lst = [3, “abc”, (25, 6)]

Un-packing, Concatenation,
Repeats

• Un-packing
– x, y, z = [1, 2, 3]
 x = 1; y = 2; z = 3

• Concatenation
– [1, 2] + [3, 4] [1, 2, 3, 4]

– lst = [1, 2]; lst.append([3, 4]) [1, 2, [3, 4]]

– lst = [1, 2]; lst.extend([3, 4]) [1, 2, 3, 4]

• Repeats
– lst = [1, 2, 3] * 3
 lst = [1, 2, 3, 1, 2, 3, 1, 2, 3]

19

Inclusion = in

2 in [2, 3, 4]  True

[2, 3] in [2, 3, 4]  False

20

Length, Max & Min, Summation

• Length
– len([1, 2, 3, 4, 5])  5

• Max & Min
– min([1, 2, 3, 4, 5])  1

– max([1, 2, 3, 4, 5])  5

• Summation
– sum([1, 2, 3, 4, 5])  15

21

Reverse & Sort

22

• Reverse
– list_iter = reversed([2, 32, 1, 6, 63, 9])

list(list_iter)  [9, 63, 6, 1, 32, 2]
– Return an Iterator from reversed()

• Sort
– sorted([2, 32, 1, 6, 63, 9])  [1, 2, 6, 9, 32, 63]
– Return a "list" from sorted()

Find, Insert, Count

23

• Find

– [1, 2, 3, 4, 5].index(3)
 2 # Found! Send the index back

– [1, 2, 3, 4, 5].index(6)
 ValueError # Not found! Send an error message back

• Insert

– [1, 2, 3, 4, 5].insert(2, 3) # 2: Index 3: Element
 [1, 2, 3, 3, 4, 5]

• Count

– [1, 2, 3, 3, 4, 5].count(3)
 2 # 3 appeared 2 times, returned 2

DICTIONARY (DICT)

24

What is "Dict"

• The Data Structure that stores a "Mapping Table" and enclosed by { }

25

menu = {“Fried Rice” : 85,
“Beef Noodle” : 95,
“Dumplings” : 65 }

Why is it called "Dict"?

• A "dictionary" is also a kind of "mapping table"

26

dictionary = {
“book” : “Bücher”,
“cat” : “Katze”,
“dog” : “Hund”,
…… }

Terminologies of "Dict"

• Keys, Values, Key-Value Pairs
–  In fact, Python uses tuple(Key, Value) to store a key-value pair.

27

dictionary = {
“book”:“Bücher”,
“cat” :“Katze”,
“dog” :“Hund”,
…… }

Keys Values

Key-Value Pairs

dictionary = {
(“book”, “Bücher”),
(“cat” , “Katze”),
(“dog” , “Hund”),
……

}
Keys Values

Key-Value Pairs

Applications of "Dict"

• Lookup • Translate

28

encryption = {
“A” : “@”,
“B” : “M”,
“C” : “$”,
…… }

exchanges = {
“USD” : 30.24,
“JPY” : 0.276,
“RMB”: 4.541,
…… }

“ABC” “@M$”

Create a "Dict"

• Empty Dict

– d = {}

– d = dict()

• Regular Dict

– Normal Way: d = {“USD”:30.24, “JPY”:0.276, “RMB”:4.541}

– By zip(): d = dict(zip(("USD", "JPY", "RMB"), (30.24, 0.276, 4.541)))

29

Read and Modify

• Read

– d = {“USD”:30.24, “JPY”:0.276, “RMB”:4.541}

– d[“USD”] 30.24

– d[“EUR”] Return KeyError when key doesn't exist

• Modify

– d = {“USD”:30.24, “JPY”:0.276, “RMB”:4.541}

– d[“USD”] = 31.02
 d = {“USD”:31.02, “JPY”:0.276, “RMB”:4.541}

– d[“EUR”] = 35.636 Add a new element when it hasn't existed

30

Merge

31

• Merge Two Dictionaries

– d1 = dict(zip(“abc”, range(1,4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– d2 = dict(zip(“efg”, range(4, 7))) {‘e’: 4, ‘f’: 5, ‘g’: 6}

– d1.update(d2) {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘e’: 4, ‘f’: 5, ‘g’: 6}

– If there is a duplicate key, the latter will override the
former

Read Key & Value

• Read Key
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}
– list(d.keys()) [‘a’, ‘b’, ‘c’]
– tuple(d.keys()) (‘a’, ‘b’, ‘c’)

• Read Value
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}
– list(d.values()) [1, 2, 3]
– tuple(d.values()) (1, 2, 3)

• Read (Key, Value)
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}
– list(d.items()) [(‘a’, 1), (‘b’, 2), (‘c’, 3)]
– tuple(d.items()) (('a', 1), ('b', 2), ('c', 3))

32

Delete

• Delete an Element
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– del d[“c”] {‘a’: 1, ‘b’: 2}

• Delete all Elements but Keep the Memory Allocation
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– d.clear() {}

• Delete all Elements and Recycle the Memory Allocation
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– del d

33

Length, Minimum, Maximum

• Length

– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– len(d) 3

• Minimum

– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– min(d) Find the minimum in “Key” “a”

– min(d.keys()) Find the minimum in “Key” “a”

– min(d.values()) Find the minimum in “Value” 1

• Maximum

– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– max(d) Find the maximum in “Key” “c”

– max(d.keys()) Find the maximum in “Key” “c”

– max(d.values()) Find the maximum in “Value” 3

34

Sorting

• Sort by Keys

– d = {"b":2, "a":1, "c":3}

– sorted(d)  ['a', 'b', 'c’]

– sorted(d.keys())  ['a', 'b', 'c’]

• Sort by Values

– d = {"b":2, "a":1, "c":3}

– sorted(d.values())  [1, 2, 3]

35

SET

36

What is a "Set"?

• A Group of Non-duplicated, Unordered Data enclosed by { }

–  In fact, it is the part of "Key" in a "dictionary".

37

{3, “abc”, True} {“Bob”, (67, 82)}

Non-duplicated,
Unordered Data

Available to Contain
different types of data

Able to Contain
Immutable Elements

{3, 3, 18, 25}

Create a Set

• Empty Set

– s = set() set()

– s = {} X Treated as a dict

• Regular Set

– s = {1, 2, 3, 4} {1, 2, 3, 4}

– s = {1, 2, 3, 3, 4} {1, 2, 3, 4}

– s = {3, “abc”, True} {‘abc’, True, 3}

– s = {“Bob”, (67, 82)} {‘Bob’, (67, 82)}

– s = {“Bob”, [67, 82]} X The elements must be Immutable

38

Add, Include, Delete

39

• Add
– s = {1, 2, 3}
– s.add(4)  {1, 2, 3, 4}

• Include
– s = {1, 2, 3}
– 2 in s True

• Delete
– Delete an Element

• s = {1, 2, 3}
• s.remove(3)  {1, 2}

– Delete all Elements but Keep the Memory
• s.clear()  set()

– Delete both Elements and Memory
• del s

Operations of Sets

40

a = {1, 2, 3, 4, 5}
b = {4, 5, 6, 7, 8}

Intersect

a & b = {4, 5}

1
2
3

6
7
8

4
5

1
2
3

6
7
8

4
5

a - b = {1, 2, 3}

1
2
3

6
7
8

4
5

b - a = {6, 7, 8}

1
2
3

6
7
8

4
5

a | b =
{1, 2, 3, 4, 5, 6, 7, 8}

Union Complement

1
2
3

6
7
8

4
5

a ^ b = {1, 2, 3, 6, 7, 8}

Exclusive

Length, Minimum, Maximum

41

• Length
– s = {1, 2, 3, 4, 5}
– len(s)  5

• Minimum
– s = {1, 2, 3, 4, 5}
– min(s)  1

• Maximum
– s = {1, 2, 3, 4, 5}
– max(s)  5

Summation, Sorting

42

• Summation
– s = {1, 2, 3, 4, 5}

– sum(s)  15

• Sorting
– s = {3, 1, 5, 4, 2}

– sorted(s)  [1, 2, 3, 4, 5]

– Note
• sorted() return a “List” as the result.

Brief of this Section

• The Data Structures You’ve Learned:

43

Name Immutable Duplicable Ordered Applications

Tuple v v v Data that less Modified

List v v Data that more Modified

Dict Not for Keys Data with Mapping Relationships

Set Data that never duplicated

	Slide1
	Agenda
	Introduction
	What is "Compound Data Type"?
	Categories
	Categories
	Tuple
	What is "Tuple"?
	Create a Tuple
	Un-packing & Exchange
	Concatenation & Repeats
	Inclusion = in
	Slicing
	Length, Max & Min, Summation
	List
	What is "List"?
	Difference with Tuple
	Create a List
	Un-packing, Concatenation, Repeats
	Inclusion = in
	Length, Max & Min, Summation
	Reverse & Sort
	Find, Insert, Count
	Dictionary (Dict)
	What is "Dict"
	Why is it called "Dict"?
	Terminologies of "Dict"
	Applications of "Dict"
	Create a "Dict"
	Read and Modify
	Merge
	Read Key & Value
	Delete
	Length, Minimum, Maximum
	Sorting
	Set
	What is a "Set"?
	Create a Set
	Add, Include, Delete
	Operations of Sets
	Length, Minimum, Maximum
	Summation, Sorting
	Brief of this Section

