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• Tuple

• List

• Dictionary (Dict)

• Set
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INTRODUCTION
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What is "Compound Data Type"?

• The data type combining several "Literals"
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(3, 18, 25) (3, “abc”, True)



Categories

Immutable

Mutable
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List Dict Set

Tuple



Categories

• What is "Immutable"?

– The old memory will be discarded when there is any modification.

– i.e., “Once a memory was created, it will never be changed.”
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…

(3, 15, 7) 10000

(3, 15, 7, 23) 10200

X



TUPLE
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What is "Tuple"?

• A set of literals enclosed by ( ) and delimited by ,
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(3, 18, 25) (3, “abc”, True) (“Bob”, (67, 82))

Tuple with Same
Types of Literals

Tuple with Different
Types of Literals

Tuple with
Nested Tuples



Create a Tuple

• Empty Tuples
– t = ()

– t = tuple()

• Tuples with Single Element
– t = “dog”,  "comma" is mandatory, otherwise variable t will become a string

– t = (“dog”,)  "comma" is mandatory.  You may check data type by type() command

• Regular Tuples
– t = “dog”, “cat”

– t = (“dog”, “cat”)
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Un-packing & Exchange

• Un-packing
– x, y, z = (3, 19, 23)
– x 3, y 19, z 23

• Exchange of Values
– x = 3;  y = 19
– y, x = x, y
– y 3, x 19
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Concatenation & Repeats

• Concatenation

– (2, 3) + (4, 5) (2, 3, 4, 5)

• Repeats

– (2, 3) * 3 (2, 3, 2, 3, 2, 3)
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Inclusion = in

2 in (2, 3, 4)  True

(2, 3) in (2, 3, 4)  False
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Slicing

• t = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

• t[0]  0

• t[2:7]  (2, 3, 4, 5, 6)

• t[-6:-3]  (4, 5, 6)

• t[2:]  (2, 3, 4, 5, 6, 7, 8, 9)

• t[:7]  (0, 1, 2, 3, 4, 5, 6)

• t[2:7:2]  (2, 4, 6)

• sc = slice(2, 7, 2)
t[sc]   (2, 4, 6)
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Length, Max & Min, Summation

• Length
– len((1, 2, 3, 4, 5))  5

• Maximum & Minimum
– min((1, 2, 3, 4, 5))  1
– max((1, 2, 3, 4, 5))  5

• Summation
– sum((1, 2, 3, 4, 5))  15
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LIST
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What is "List"?

• Similar to "Tuple" but surround elements by [ ].

[3, 18, 25] [3, “abc”, True] [“Bob”, [67, 82]]

List with Same
Types of Literals

List with Different
Types of Literals

List with Nested
Lists or Tuples
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Difference with Tuple
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• It’s Mutable • Larger Memory Allocation

list1 = [3, 18, 25] +

• insert function

• modify function

• delete function

Provides a set of functions
to change contents

Note：
• The original address could be changed or maintained

after altering the contents.  It depends on the system.

Tuple

List



Create a List
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• Empty Lists

– lst = []

– lst = list()

• Regular Lists

– lst = [3, 18, 25]

• Lists with Various Data Types

– lst = [3, “abc”, True]

• Nested Lists

– lst = [3, “abc”, [25, 6]]

– lst = [3, “abc”, (25, 6)]



Un-packing, Concatenation, 
Repeats

• Un-packing
– x, y, z = [1, 2, 3]
 x = 1; y = 2; z = 3

• Concatenation
– [1, 2] + [3, 4] [1, 2, 3, 4]

– lst = [1, 2]; lst.append([3, 4]) [1, 2, [3, 4]]

– lst = [1, 2]; lst.extend([3, 4]) [1, 2, 3, 4]

• Repeats
– lst = [1, 2, 3] * 3
 lst = [1, 2, 3, 1, 2, 3, 1, 2, 3]
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Inclusion = in

2 in [2, 3, 4]  True

[2, 3] in [2, 3, 4]  False
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Length, Max & Min, Summation

• Length
– len([1, 2, 3, 4, 5])  5

• Max & Min
– min([1, 2, 3, 4, 5])  1

– max([1, 2, 3, 4, 5])  5

• Summation
– sum([1, 2, 3, 4, 5])  15
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Reverse & Sort
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• Reverse
– list_iter = reversed([2, 32, 1, 6, 63, 9])

list(list_iter)  [9, 63, 6, 1, 32, 2]
– Return an Iterator from reversed()

• Sort
– sorted([2, 32, 1, 6, 63, 9])  [1, 2, 6, 9, 32, 63]
– Return a "list" from sorted()



Find, Insert, Count
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• Find

– [1, 2, 3, 4, 5].index(3)
 2 # Found! Send the index back

– [1, 2, 3, 4, 5].index(6)
 ValueError # Not found! Send an error message back

• Insert

– [1, 2, 3, 4, 5].insert(2, 3) # 2: Index 3: Element
 [1, 2, 3, 3, 4, 5]

• Count

– [1, 2, 3, 3, 4, 5].count(3)
 2 # 3 appeared 2 times, returned 2



DICTIONARY (DICT)
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What is "Dict"

• The Data Structure that stores a "Mapping Table" and enclosed by { }
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menu = {“Fried Rice” : 85,
“Beef Noodle” : 95,
“Dumplings” : 65 }



Why is it called "Dict"?

• A "dictionary" is also a kind of "mapping table"
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dictionary = {
“book” : “Bücher”,
“cat” : “Katze”,
“dog” : “Hund”,
…… }



Terminologies of "Dict"

• Keys, Values, Key-Value Pairs
–  In fact, Python uses tuple(Key, Value) to store a key-value pair.
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dictionary = {
“book”:“Bücher”,
“cat” :“Katze”,
“dog”  :“Hund”,
…… }

Keys Values

Key-Value Pairs

dictionary = {
(“book”, “Bücher”),
(“cat”    , “Katze”),
(“dog”  , “Hund”),
……

}
Keys Values

Key-Value Pairs



Applications of "Dict"

• Lookup • Translate
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encryption = {
“A” : “@”,
“B” : “M”,
“C” : “$”,
…… }

exchanges = {
“USD” : 30.24,
“JPY” : 0.276,
“RMB”: 4.541,
…… }

“ABC” “@M$”



Create a "Dict"

• Empty Dict

– d = {}

– d = dict()

• Regular Dict

– Normal Way: d = {“USD”:30.24, “JPY”:0.276, “RMB”:4.541}

– By zip(): d = dict(zip(("USD", "JPY", "RMB"), (30.24, 0.276, 4.541)))
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Read and Modify

• Read

– d = {“USD”:30.24, “JPY”:0.276, “RMB”:4.541}

– d[“USD”] 30.24

– d[“EUR”] Return KeyError when key doesn't exist

• Modify

– d = {“USD”:30.24, “JPY”:0.276, “RMB”:4.541}

– d[“USD”] = 31.02
 d = {“USD”:31.02, “JPY”:0.276, “RMB”:4.541}

– d[“EUR”] = 35.636 Add a new element when it hasn't existed
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Merge
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• Merge Two Dictionaries

– d1 = dict(zip(“abc”, range(1,4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– d2 = dict(zip(“efg”, range(4, 7))) {‘e’: 4, ‘f’: 5, ‘g’: 6}

– d1.update(d2) {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘e’: 4, ‘f’: 5, ‘g’: 6}

– If there is a duplicate key, the latter will override the 
former



Read Key & Value

• Read Key
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}
– list(d.keys()) [‘a’, ‘b’, ‘c’]
– tuple(d.keys()) (‘a’, ‘b’, ‘c’)

• Read Value
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}
– list(d.values()) [1, 2, 3]
– tuple(d.values()) (1, 2, 3)

• Read (Key, Value)
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}
– list(d.items()) [(‘a’, 1), (‘b’, 2), (‘c’, 3)]
– tuple(d.items()) (('a', 1), ('b', 2), ('c', 3))
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Delete

• Delete an Element
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– del d[“c”] {‘a’: 1, ‘b’: 2}

• Delete all Elements but Keep the Memory Allocation
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– d.clear() {}

• Delete all Elements and Recycle the Memory Allocation
– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– del d
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Length, Minimum, Maximum

• Length

– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– len(d) 3

• Minimum

– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– min(d) Find the minimum in “Key” “a”

– min(d.keys()) Find the minimum in “Key” “a”

– min(d.values()) Find the minimum in “Value” 1

• Maximum

– d = dict(zip(“abc”, range(1, 4))) {‘a’: 1, ‘b’: 2, ‘c’: 3}

– max(d) Find the maximum in “Key” “c”

– max(d.keys()) Find the maximum in “Key” “c”

– max(d.values()) Find the maximum in “Value” 3
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Sorting

• Sort by Keys

– d = {"b":2, "a":1, "c":3}

– sorted(d)  ['a', 'b', 'c’]

– sorted(d.keys())  ['a', 'b', 'c’]

• Sort by Values

– d = {"b":2, "a":1, "c":3}

– sorted(d.values())  [1, 2, 3]
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SET
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What is a "Set"?

• A Group of Non-duplicated, Unordered Data enclosed by { }

–  In fact, it is the part of "Key" in a "dictionary".
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{3, “abc”, True} {“Bob”, (67, 82)}

Non-duplicated,
Unordered Data

Available to Contain
different types of data

Able to Contain
Immutable Elements

{3, 3, 18, 25}



Create a Set

• Empty Set

– s = set() set()

– s = {} X Treated as a dict

• Regular Set

– s = {1, 2, 3, 4} {1, 2, 3, 4}

– s = {1, 2, 3, 3, 4} {1, 2, 3, 4}

– s = {3, “abc”, True} {‘abc’, True, 3}

– s = {“Bob”, (67, 82)} {‘Bob’, (67, 82)}

– s = {“Bob”, [67, 82]} X The elements must be Immutable
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Add, Include, Delete
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• Add
– s = {1, 2, 3}
– s.add(4)  {1, 2, 3, 4}

• Include
– s = {1, 2, 3}
– 2 in s True

• Delete
– Delete an Element

• s = {1, 2, 3}
• s.remove(3)  {1, 2}

– Delete all Elements but Keep the Memory
• s.clear()  set()

– Delete both Elements and Memory
• del s



Operations of Sets
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a = {1, 2, 3, 4, 5}
b = {4, 5, 6, 7, 8}

Intersect

a & b = {4, 5}

1
2
3

6
7
8

4
5

1
2
3

6
7
8

4
5

a - b = {1, 2, 3}

1
2
3

6
7
8

4
5

b - a = {6, 7, 8}

1
2
3

6
7
8

4
5

a | b =
{1, 2, 3, 4, 5, 6, 7, 8}

Union Complement

1
2
3

6
7
8

4
5

a ^ b = {1, 2, 3, 6, 7, 8}

Exclusive



Length, Minimum, Maximum
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• Length
– s = {1, 2, 3, 4, 5}
– len(s)  5

• Minimum
– s = {1, 2, 3, 4, 5}
– min(s)  1

• Maximum
– s = {1, 2, 3, 4, 5}
– max(s)  5



Summation, Sorting
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• Summation
– s = {1, 2, 3, 4, 5}

– sum(s)  15

• Sorting
– s = {3, 1, 5, 4, 2}

– sorted(s)  [1, 2, 3, 4, 5]

– Note
• sorted() return a “List” as the result.



Brief of this Section

• The Data Structures You’ve Learned:
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Name Immutable Duplicable Ordered Applications

Tuple v v v Data that less Modified

List v v Data that more Modified

Dict Not for Keys Data with Mapping Relationships

Set Data that never duplicated
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